Don't Be a Tattle-Tale: Preventing Leakages through Data **Dependencies on Access Control Protected Data**

Primal Pappachan^{†‡}, Shufan Zhang^{*}, Xi He^{*}, Sharad Mehrotra[†]

⁺ University of California Irvine ⁺ Pennsylvania State University ^{*} University of Waterloo

$Zip \rightarrow State$ **1. Inference Problem** Role \rightarrow SalPerHr SalPerHr Wid Eid DeptName Salary Eid EName Zip State WorkHrs Role 800 CS 45678 WA 20 40 34 34 Student 1 Tina t1 200 EE 40 CA Faculty 56 56 54321 2 8000 Bobby t2 180

RQ1. How to design an appropriate security *notion to capture such leakage model?*

RQ2. How to identify "minimal" number of cells to hide to prevent such leakages? t₆

t₇ RQ3.How to design an algorithm or system to "efficiently" prevent such leakages? t₈

2. Background

	Tuple Representation				
	$\forall A_i \ Dom(A_i) = \{1, 2, 3\}$				
	A ₁	A ₂	A ₃		
t_1	<i>c</i> ₁ 1	c ₂ 2	<i>c</i> ₃ 3		
t_2	^c ₄ 1	^c ₅ 2	^c ₆ 3		

Access Control Policies:

- Policy maps a Cell c_i to either sensitive or non-sensitive.
- When a cell is sensitive, its value is replaced with * (*null*)
- Base view where all cells are nulls

Database as a collection of cells

Cell Representation $C_1 C_2 C_3 C_4 C_5 C_6$ 1 2 2 A_1 A_2 A_3 A_1 A_2 A_3

Querier Views:

2. Related Work

4. Tattle-Tale Condition

True, when all the other predicates (except Pred(c^{*})) evaluate as True $TTC(\delta, V, c_i) = -$

False, **otherwise**

Full deniability is achieved for a sensitive cell in a view if for all relevant dependency instantiations, **Tattle-Tale Condition** evaluates False.

Preventing Leakages:

Hide one other cell in δ to hide the *truth*

c ₁	c ₂	C ₃	C ₄	c ₅	c ₆	с	12
*	2	2	1	2	*		

6. Evaluation

Dataset: Tax [ICDE'07]

10k tuples, 14 attributes, with 11 dependencies

- With increasing number of sensitive cells, the number of hidden cells increases **linearly**
- Our approach always hides less cells than the baselines

Performance:

• The overhead of our approach is small, compared to the

- Design time prevention \rightarrow Different inference channels, poor data availability [TKDE'96, CSF'98]
- Query time prevention \rightarrow Weak security (fully reconstruct the sensitive cell) [TKDE'00]
- Perfect secrecy or randomized algorithm \rightarrow Poor data utility [SIGMOD'04, ICDE'20]

3. Security Model

Inference channel:

- Denial Constraints (DCs)
- Function-based Constraints

 $\tilde{\delta}_1$: \neg (*Pred*₁ \land *Pred*₂ $\land \cdots \land$ *Pred*_n) $Pred_i = (c_i \ op \ constant) \ or \ (c_i \ op \ c_i)$ where op: $\{=, \neq, \leq, \geq, >, <\}$

DCinctontiation	c ₁	C ₂	C ₃	C ₄	C ₅	C ₆	
DC instantiation:	1	2	2	1	2	3	
$A_1 \rightarrow A_3$:					A ₂		
$\delta \cdot -((c_1 - c_2)) \wedge$	(c)	+ c	((.,				

another value of $\delta_1: \neg((c_1 = c_4) \land (c_2 = c_5) \land (c_3 < c_6))$ predicate $\neg((*=1) \land (2=2) \land (3 < *)$

Cueset for c_1 : { c_2 , c_5 , c_3 , c_6 } Unknown True Unknown

5. System Overview

Tuple ID Name Zip City Salary 181 182	Determine Sensitivity
Data DependenciesCuesetsDependency $T_{181}[`City`]$ c_1^* δ_1 δ_2 \cdots Instantiation c_1 \cdots	Inference Detection
Iterations Minimal Cell Hidden Cells Full	Inference Protection

baselines

• When increasing the number of sensitive cells, the performance overhead scales **linearly for our approach**

Holoclean [VLDB'17] as an Adversary:

- Holoclean can reconstruct 100% protected cells before applying our approach
- After applying our approach, it only recovers 10%-15% cells, with marginal improvement over random guess

7. Takeaways

Leakage attack based on two types of data dependencies Denial Constraints

• Function-based Constraints

 $o_1: \neg((c_1 = c_4) \land (c_3 \neq c_6))$

Inference function:

 $I(c_i|V,\delta_1)$ $V(C) \mid 1$ A_1 A_2 A_3 A_1 A_2 A_3

Full deniability:

For $S_{\Delta} = \{\delta_i\}, \forall c_i \in C^S$, $I(c_i | V, S_{\Lambda}) = I(c_i | V_0, S_{\Lambda})$

Adversary can learn nothing about the sensitive cells beyond what is given in the base view.

Inference Detection:

• Done naively could result in quadratic blow up

• Optimization: Instantiate only the set of cells the lead to $Pred(c^*)$ evaluating as False

Inference Protection:

• Perform Minimum Subset Cover (MSC) on the cuesets to find a minimum cover of the subsets • Repeat until all cuesets corresponding to sensitive cells and hiddenCells are protected

Strong security model • Tattle-Tale Condition **Full Deniability**

Relaxing assumptions in the model

End-to-end system Utility, efficiency,

scalability and convergence Optimizations to improve performance

Check out the project repo!

VLDB 2022, Sydney, Australia