
Don’t Be a Tattle-Tale: Preventing Leakages through Data
Dependencies on Access Control Protected Data

Primal Pappachan†‡, Shufan Zhang*, Xi He*, Sharad Mehrotra†

4. Tattle-Tale Condition

1. Inference Problem

5. System Overview

Inference Detection:
• Done naively could result in quadratic blow up
• Optimization: Instantiate only the set of cells the lead
to 𝑃𝑟𝑒𝑑 𝑐∗ evaluating as False

Inference Protection:
• Perform Minimum Subset Cover (MSC) on the cuesets
to find a minimum cover of the subsets
• Repeat until all cuesets corresponding to sensitive cells
and hiddenCells are protected

Determine
Sensitivity

Inference
Detection

Inference
Protection

Data Utility:
• With increasing number of sensitive cells, the number of

hidden cells increases linearly
• Our approach always hides less cells than the baselines

Performance:
• The overhead of our approach is small, compared to the
baselines
• When increasing the number of sensitive cells, the
performance overhead scales linearly for our approach

6. Evaluation

RQ1. How to design an appropriate security
notion to capture such leakage model?

RQ2. How to identify “minimal” number of cells
to hide to prevent such leakages?

RQ3.How to design an algorithm or system to
“efficiently” prevent such leakages?

Holoclean [VLDB’17] as an Adversary:
• Holoclean can reconstruct 100% protected cells before

applying our approach
• After applying our approach, it only recovers 10%-15%

cells, with marginal improvement over random guess

Check out the
project repo!

𝑇𝑇𝐶(𝛿, 𝑉, 𝑐") =

True, when all the other
predicates (except Pred(𝒄∗))
evaluate as True

False, otherwise

Full deniability is achieved for a sensitive cell in a
view if for all relevant dependency instantiations,
Tattle-Tale Condition evaluates False.

Preventing Leakages:

Hide one other cell
in 𝛿 to hide the truth
value of another
predicate

† University of California Irvine ‡ Pennsylvania State University * University of Waterloo

7. Takeaways
Leakage attack based on two types of data dependencies
• Denial Constraints
• Function-based Constraints

Strong security model
• Tattle-Tale Condition
• Full Deniability
• Relaxing assumptions in

the model

End-to-end system
• Utility, efficiency,

scalability and convergence
• Optimizations to improve

performance

VLDB 2022, Sydney, Australia

2. Background
Database as a
collection of cells

- Policy maps a Cell 𝑐! to either
sensitive or non-sensitive.

- When a cell is sensitive, its
value is replaced with * (null)

- Base view where all cells are
nulls

Access Control Policies: Querier Views:

- Design time prevention → Different inference
channels, poor data availability [TKDE’96, CSF’98]

- Query time prevention → Weak security (fully
reconstruct the sensitive cell) [TKDE’00]

- Perfect secrecy or randomized algorithm → Poor
data utility [SIGMOD’04, ICDE’20]

3. Security Model
Inference channel:
- Denial Constraints (DCs)
- Function-based Constraints

0𝛿#: ¬(𝑃𝑟𝑒𝑑# ∧ 𝑃𝑟𝑒𝑑$ ∧ ⋯∧ 𝑃𝑟𝑒𝑑%)
𝑃𝑟𝑒𝑑" = (𝑐" 𝑜𝑝 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡) or (𝑐" 𝑜𝑝 𝑐&)

where op: {=,≠,≤,≥,>,<}

𝐴# → 𝐴':
𝛿#: ¬((𝑐# = 𝑐() ∧ (𝑐' ≠ 𝑐)))

DC instantiation:

𝑰 𝒄𝒊 𝑽, 𝜹𝟏)

Inference function:

Full deniability:
For S# = 𝛿$, ∀𝒄𝒊 ∈ 𝑪𝑺,
𝑰 𝒄𝒊 𝑽, 𝑺𝚫) = 𝑰 𝒄𝒊 𝑽𝟎, 𝑺𝜟)

Adversary can learn nothing about the sensitive
cells beyond what is given in the base view.

2. Related Work

Cueset for 𝑐#: {𝑐$, 𝑐*, 𝑐', 𝑐)}

Dataset: Tax [ICDE’07]
• 10k tuples, 14 attributes, with 11 dependencies

